CHEMISTRY

1. An ideal gas undergoes isothermal compression from $5 \mathrm{~m}^{3}$ against a constant external pressure of $4 \mathrm{Nm}^{-2}$. Heat released in this process is used to increase the temperature of 1 mole of Al . If molar heat capacity of Al is $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, the temperature of Al increases by :
(1) $\frac{3}{2} \mathrm{~K}$
(2) $\frac{2}{3} \mathrm{~K}$
(3) 1 K
(4) 2 K

Ans. (2)
Sol. Work done on isothermal irreversible for ideal gas
$=-\mathrm{P}_{\mathrm{ext}}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$=-4 \mathrm{~N} / \mathrm{m}^{2}\left(1 \mathrm{~m}^{3}-5 \mathrm{~m}^{3}\right)$
$=16 \mathrm{Nm}$
Isothermal process for ideal gas
$\Delta \mathrm{U}=0$
$\mathrm{q}=-\mathrm{w}$
$=-16 \mathrm{Nm}$
$=-16 \mathrm{~J}$
Heat used to increase temperature of $\mathrm{A} \ell$ $\mathrm{q}=\mathrm{n} \mathrm{C}_{\mathrm{m}} \Delta \mathrm{T}$
$16 \mathrm{~J}=1 \times 24 \frac{\mathrm{~J}}{\mathrm{~mol} . \mathrm{K}} \times \Delta \mathrm{T}$
$\Delta \mathrm{T}=\frac{2}{3} \mathrm{~K}$
2. The $71^{\text {st }}$ electron of an element X with an atomic number of 71 enters into the orbital :
(1) $4 f$
(2) $6 p$
(3) 6 s
(4) 5 d

Ans. (1)
3. The number of 2-centre-2-electron and 3-centre-2-electron bonds in $\mathrm{B}_{2} \mathrm{H}_{6}$, respectively, are :
(1) 2 and 4
(2) 2 and 1
(3) 2 and 2
(4) 4 and 2

Ans. (4)
4. The amount of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ required to prepare 2 L of its 0.1 M aqueous solution is :
(1) 68.4 g
(2) 17.1 g
(3) $34.2 \mathrm{~g}(4) 136.8 \mathrm{~g}$

Ans. (1)
Sol. Molarity $=\frac{(\mathrm{n})_{\text {solute }}}{\mathrm{V}_{\text {solution }}(\text { in lit })}$
$0.1=\frac{\mathrm{wt} . / 342}{2}$
wt $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)=68.4$ gram
5. Among the following reactions of hydrogen with halogens, the one that requires a catalyst is :
(1) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
(2) $\mathrm{H}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{HF}$
(3) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCI}$
(4) $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$

Ans. (1)
6. Sodium metal on dissolution in liquid ammonia gives a deep blue solution due to the formation of:
(1) sodium ion-ammonia complex
(2) sodamide
(3) sodium-ammonia complex
(4) ammoniated electrons

Ans. (4)
7. What will be the major product in the following mononitation reaction?

(1)

(2)

(3)

(4)

Ans. (3)
10. The pair that contains two $\mathrm{P}-\mathrm{H}$ bonds in each of the oxoacids is :
(1) $\mathrm{H}_{3} \mathrm{PO}_{2}$ nad $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
(2) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
(3) $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$
(4) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ nad $\mathrm{H}_{3} \mathrm{PO}_{3}$

Ans. (1)
11. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Ans. (4)
12. The difference in the number of unpaired electrons of a metal ion in its high-spin and low-spin octahedral complexes is two. The metal ion is :
(1) Fe^{2+}
(2) Co^{2+}
(3) Mn^{2+}
(4) Ni^{2+}

Ans. (2)
13. A compound of formula $A_{2} B_{3}$ has the hep lattice. Which atom forms the hcp lattice and what fraction of tetrahedral voids is occupied by the other atoms :
(1) hcp lattice-A, $\frac{2}{3}$ Tetrachedral voids-B
(2) hcp lattice-B, $\frac{1}{3}$ Tetrachedral voids-A
(3) hcp lattice-B, $\frac{2}{3}$ Tetrachedral voids-A
(4) hcp lattice-A $\frac{1}{3}$ Tetrachedral voids-B

Ans. (2)

Ans. (3)

(2)

(3)

(4)

Sol. $\mathrm{A}_{2} \mathrm{~B}_{3}$ has HCP lattice
If A form HCP, then $\frac{3^{\text {th }}}{4}$ of THV must occupied by B to form $A_{2} B_{3}$

If B form HCP, then $\frac{1^{\text {th }}}{3}$ of THV must occupied by A to form $A_{2} B_{3}$
14. The reaction that is NOT involved in the ozone layer depletion mechanism is the stratosphere is:
(1) $\mathrm{HOCl}(\mathrm{g}) \xrightarrow{\text { hu }} \dot{\mathrm{O}} \mathrm{H}(\mathrm{g})+\dot{\mathrm{C}} \mathrm{l}(\mathrm{g})$
(2) $\mathrm{CF}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{uv}} \dot{\mathrm{C}} \mathrm{C}(\mathrm{g})+\dot{\mathrm{C}} \mathrm{F}_{2} \mathrm{Cl}(\mathrm{g})$
(3) $\mathrm{CH}_{4}+2 \mathrm{O}_{3} \rightarrow 3 \mathrm{CH}_{2}=\mathrm{O}+3 \mathrm{H}_{2} \mathrm{OP}$
(4) $\mathrm{Cl} \dot{\mathrm{O}}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \dot{\mathrm{C}} \mathrm{l}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Ans. (3)
15. The process with negative entropy change is :
(1) Dissolution of iodine in water
(2) Synthesis of ammonia from N_{2} and H_{2}
(3) Dissolution of $\mathrm{CaSO}_{4}(\mathrm{~s})$ to CaO (s) and $\mathrm{SO}_{3}(\mathrm{~g})$
(4) Subimation of dry ice

Ans. (2)
Sol. $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta \mathrm{n}_{\mathrm{g}}<0$

E

16. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Ans. (3)
17. A reaction of cobalt(III) chloride and ethylenediamine in a $1: 2$ mole ratio generates two isomeric products A (violet coloured) B (green coloured). A can show optial actively, B is optically inactive. What type of isomers does A and B represent?
(1) Geometrical isomers
(2) Ionisation isomers]
(3) Coordination isomers
(4) Linkage isomers

Ans. (1)
Click Herefor JEEMains \& AdvancedFree Onl ine Test Practice https://examination-system. shineitsolutions.in/jee-mains-and-advanced-examination-system/student -login.php
18. The major product obtained in the following reaction is :

(1)

(2)

(3)

(4)

Ans. (4)
19. Which of the following tests cannot be used for identifying amino acids ?
(1) Biuret test
(2) Xanthoproteic test
(3) Barfoed test
(4) Ninhydrin test

Ans. (3)
20. What is the IUPAC name of the following compound ?

(1) 3-Bromo-1, 2-dimethylbut-1-ene]
(2) 4-Bromo-3-methylpent-2-ene
(3) 2-Bromo-3-methylpent-3-ene
(4) 3-Bromo-3-methyl-1, 2-dimethylprop-1-ene

Ans. (2)
21. Which is the most suitable reagent for the following transformation?

$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(1) alkaline KMnO_{4}
(2) $\mathrm{I}_{2} / \mathrm{NaOH}$
(3) Tollen's reagent
(4) $\mathrm{CrO}_{2} / \mathrm{CS}_{2}$

Ans. (2)
22. The correct match between item 'I' and item 'II' is :

Item 'I' (compound)
(A) Lysine
(B) Furfural
(C) Benzyl alcohol
(D) Styrene

Item 'II' (reagent)
(P) 1-naphthol
(Q) ninhydrin
(R) KMnO_{4}
(S) Ceric ammonium nitrate
(1) $(\mathrm{A}) \rightarrow(\mathrm{Q}),(\mathrm{B}) \rightarrow(\mathrm{P}),(\mathrm{C}) \rightarrow(\mathrm{S}),(\mathrm{D}) \rightarrow(\mathrm{R})$
(2) $(\mathrm{A}) \rightarrow(\mathrm{Q}),(\mathrm{B}) \rightarrow(\mathrm{R}),(\mathrm{C}) \rightarrow(\mathrm{S}),(\mathrm{D}) \rightarrow(\mathrm{P})$
(3) $(\mathrm{A}) \rightarrow(\mathrm{Q}),(\mathrm{B}) \rightarrow(\mathrm{P}),(\mathrm{C}) \rightarrow(\mathrm{R}),(\mathrm{D}) \rightarrow(\mathrm{S})$
(4) $(\mathrm{A}) \rightarrow(\mathrm{R}),(\mathrm{B}) \rightarrow(\mathrm{P}),(\mathrm{C}) \rightarrow(\mathrm{Q}),(\mathrm{D}) \rightarrow(\mathrm{S})$

Ans. (1)
23. In the reaction of oxalate with permaganate in acidic medium, the number of electrons involved in producing one molecule of CO_{2} is :
(1) 10
(2) 2
(3) 1
(4) 5

Ans. (3)

Sol.

$$
\begin{aligned}
& 2 \mathrm{MnO}_{4}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} 2 \stackrel{+2}{\mathrm{Mn}^{2+}} \\
&+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$10 \mathrm{e}^{-}$trans for 10 molecules of CO_{2} so per molecule of CO_{2} transfer of e^{-}is ' 1 '
24. $5.1 \mathrm{~g} \mathrm{NH}_{4} \mathrm{SH}$ is introduced in 3.0 L evacuated flask at $327^{\circ} \mathrm{C} .30 \%$ of the solid $\mathrm{NH}_{4} \mathrm{SH}$ decomposed to NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ as gases. The K_{p} of the reaction at $327^{\circ} \mathrm{C}$ is $(\mathrm{R}=0.082 \mathrm{~L}$ atm $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$, Molar mass of $\mathrm{S}=32 \mathrm{~g} \mathrm{~mol}^{/ 01}$, molar mass of $\mathrm{N}=14 \mathrm{~g} \mathrm{~mol}^{-1}$)
(1) $1 \times 10^{-4} \mathrm{~atm}^{2}$
(2) $4.9 \times 10^{-3} \mathrm{~atm}^{2}$
(3) $0.242 \mathrm{~atm}^{2}$
(4) $0.242 \times 10^{-4} \mathrm{~atm}^{2}$

Ans. (3)
$\mathrm{NH}_{4} \mathrm{SH}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
Sol. $\mathrm{n}=\frac{5.1}{51}=.1$ mole $0 \quad 0$
$.1(-1-\alpha) \quad .1 \alpha \quad .1 \alpha$
$\alpha=30 \%=.3$
so number of moles at equilibrium

$$
=\begin{array}{lll}
.1(1-.3) & .1 \times .3 & .1 \times .3 \\
= & .07 & =.03
\end{array}=.03
$$

Now use $\mathrm{PV}=\mathrm{nRT}$ at equilibrium
$\mathrm{P}_{\text {total }} \times 3$ lit $=(.03+.03) \times .082 \times 600$
$\mathrm{P}_{\text {total }}=.984 \mathrm{~atm}$
At equilibrium
$\mathrm{P}_{\mathrm{NH}_{3}}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{\mathrm{P}_{\text {total }}}{2}=.492$
So $\mathrm{k}_{\mathrm{p}}=\mathrm{P}_{\mathrm{NH}_{3}} \cdot \mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=(.492)$ (.492)

$$
\mathrm{k}_{\mathrm{p}}=.242 \mathrm{~atm}^{2}
$$

JEE (Main) Examination-2019/Evening Session/10-01-2019

25. The electrolytes usually used in the electroplating of gold and silver, respectively, are :
(1) $\left[\mathrm{Au}(\mathrm{OH})_{4}\right]^{-}$and $\left[\mathrm{Ag}(\mathrm{OH})_{2}\right]^{-}$
(2) $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$and $[\mathrm{Ag} \mathrm{CI} 2]^{-}$
(3) $\left[\mathrm{Au}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$
(4) $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$and $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$

Ans. (4)
26. Elevation in the boiling point for 1 molal solution of glucose is 2 K . The depression in the freezing point of 2 molal solutions of glucose in the same solvent is 2 K . The relation between K_{b} and K_{f} is:
(1) $\mathrm{K}_{\mathrm{b}}=0.5 \mathrm{~K}_{\mathrm{f}}$
(2) $\mathrm{K}_{\mathrm{b}}=2 \mathrm{~K}_{\mathrm{f}}$
(3) $\mathrm{K}_{\mathrm{b}}=1.5 \mathrm{~K}_{\mathrm{f}}$
(4) $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{f}}$

Ans. (2)
Sol. Ans.(2)
$\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\Delta \mathrm{T}_{\mathrm{f}}}=\frac{\mathrm{i} . \mathrm{m} \times \mathrm{k}_{\mathrm{b}}}{\mathrm{i} \times \mathrm{m} \times \mathrm{k}_{\mathrm{f}}}$
$\frac{2}{2}=\frac{1 \times 1 \times \mathrm{k}_{\mathrm{b}}}{1 \times 2 \times \mathrm{k}_{\mathrm{f}}}$
$\mathrm{k}_{\mathrm{b}}=2 \mathrm{k}_{\mathrm{f}}$
27. An aromatic compound ' A ' having molecular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$ on treating with aqueous ammonia and heating forms compound ' B '. The compound ' B ' on reaction with molecular bromine and potassium hydroxide provides compound ' C ' having molecular formula $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$. The structure of ' A ' is :
(1)

(2)

(3)

(4)

Ans. (3)

