DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS
JEE-2019

1. A block of mass 10 kg is kept on a rough inclined ash shown in figure. The coefficient of friction between the block and the surface is 0.6 . Two forces of magnitudes $3 \mathrm{~N} \& \mathrm{P}$ Newton are acting of the block as shown figure. If friction on the block is acting upwards then minimum value of P for which the block remains at rest is :

(1) 64 N
(2) 32 N
(3) 12 N
(4) 3 N

Answer:

(2)

Solution:

Upward force $=$ Downward force
$\mathrm{mg} \sin \theta+3=\mathrm{p}+1$
$m g \sin \theta+3=P+\mu(N)$
substituting
$\frac{10 \times 10}{\sqrt{2}}+3=P+\frac{0.6 \times 10 \times 10}{\sqrt{2}}$
Simplifying $\mathrm{P}=32 \mathrm{~N}$
2.

For path ABC , Heat given to the system is 60 J and work done by the system is 30 J .
For path ADC , work done by the system is 10 J . The heat given to the system for path ADC is
(1) 100 J
(2) 80 J
(3) 40 J
(4) 60 J

DATE:

PHYSICS
CLASS: $\mathbf{1 2}^{\text {th }}$
JEE-2019

Answer:

(3)

Solution:

Change in Int energy should be same

In process ADC
$\Delta U=60-30=30$

In process ABC
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{w}$

$$
=30+10
$$

$$
=40 \mathrm{~J}
$$

3.

Initially an object is kept at a distance of 10 cm from the convex lens and a sharp image is formed at 10 cm ahead of lens on the screen. Now a glass plate of $\mu=1.5 \mathrm{~cm}$ and thickness 1.5 cm is placed between object and lens. The distance by which the screen be shifted to get sharp image on the screen will be
(1) $\frac{9}{5} \mathrm{~cm}$
(2) $\frac{5}{9} \mathrm{~cm}$
(3) 1 cm
(4) 5 cm

Answer:

(2)

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS
JEE - 2019

Solution:

$\vartheta=u=2 f \Rightarrow f=5 \mathrm{~cm}$
$s=t\left(1-\frac{1}{\mu}\right)=1.5\left(1-\frac{1}{312}\right)=5$

S is positive \Rightarrow along incident ray
$U^{\prime}=9.5 \mathrm{~cm} \quad \vartheta=? \quad f=5 \mathrm{~cm}$
$\frac{1}{\vartheta}=\frac{1}{f}+\frac{1}{u}$
$\Rightarrow \vartheta^{\prime}=\frac{U f}{U+f}=\frac{-(9.5)(5)}{-9.5+5}=\frac{47.5}{4.5}$
Shift $=\vartheta^{1}-\vartheta=5 / 9$
4. A planet of mass m having angular momentum \mathcal{L} is revolving around the sun. The aerial velocity fo the planet will be

(1) $\frac{L}{m}$
(2) $\frac{L}{2 m}$
(3) $\frac{2 L}{m}$
(4) $\frac{L}{4 m}$

Answer:

(2)

Solution:

For small $d \theta d A=\frac{1}{2} r^{2} d \theta$

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS

JEE - 2019

$$
\frac{d A}{d t}=\frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} w=\frac{L}{2 m}=\left\{\mathrm{Q} L=m r^{2} w\right\}
$$

5. The velocity of a particle $\stackrel{\mathrm{r}}{v}$ at any instant is $\stackrel{\mathrm{r}}{v}=y \hat{i}+x \hat{j}$. The equation of trajectory of the particle is:
(1) $x^{2}+y^{2}=$ constant
(2) $y^{2}=x^{2}+$ constant
(3) $x y=$ constant
(4) None of these

Answer:

(2)

Solution:

$$
\begin{array}{ll}
\vartheta=y i+x \hat{j} & \\
\frac{d x}{d t}=y & x d x=y d y \\
\frac{d y}{d t}=x & \frac{x^{2}}{2}+\frac{y^{2}}{2}=C \\
& x^{2}-y^{2}=K
\end{array}
$$

6. Initially block of mass M is at reston frictionless floor and the spring is in relaxed condition A constant force is applied on the block as shownin figure: The maximum velocity of block is :
(1) $\frac{F}{\sqrt{m K}}$
7. $\sqrt{(2)} \frac{2 F}{\sqrt{m K}}$
(3) $\frac{F}{2 \sqrt{m K}}$
(4) $\frac{F}{\sqrt{2 m K}}$

Answer:

(1)

Solution:

$$
\begin{aligned}
\vartheta_{\max } & =A w \\
& =\frac{F}{K} \sqrt{\frac{K}{m}}
\end{aligned}
$$

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS
JEE - 2019

$$
=\sqrt{\frac{F}{K m}}
$$

7. Magnetic field at point O is

(1) 1.5×10^{-5}
(2) 10^{-5}
(3) $2 \times 10^{-}$
(4) 10^{-4}

Answer:

(2)

Solution:

$$
\begin{aligned}
B_{O} & =B_{A B}+B_{B C}+B_{C D}+B_{O A} \\
& =O+\frac{\mu o I \vartheta}{4 \pi r_{B C}}+O+\frac{\mu O I \vartheta}{4 \pi I_{O A}}
\end{aligned}
$$

Substituting values we get $\mathrm{B}_{\mathrm{O}}=10^{-5}$
8. Charge Q is uniformly distributed over a ring of radius R. The height h, on the axis of the ring at which electric field is maximum

(1) $\frac{R}{\sqrt{2}}$
(2) $\frac{R}{2}$
(3) R
(4) None of these

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS
JEE - 2019

Answer:

(1)

Solution:

E (along) axis of circular coil $=\frac{k Q h}{\left(\mathrm{~h}^{2}+\mathrm{R}^{2}\right)^{3 / 2}}$
for max value of $\mathrm{E} \frac{d E}{d h}=O$
Differentiating E w.r.t.h and equating it to O
we get $h=\frac{ \pm R}{\sqrt{2}}$
9. Two radioactive elements A \& B have initially activity 10 curie \& 20 curie respectively. If A has twice the no. of moles as that of B . The decay constant $\alpha_{A}^{\prime} \& \mathcal{A}_{B}$ can be
(a) $(10,5)$
(b) $(5,20)$
(c) $(20,10)$
(d) $(50,100)$

Answer:

(2)

Solution:

Conceptual; $\lambda N=A \quad \frac{\lambda_{A}}{\lambda_{B}} \frac{N_{A}}{N_{B}}=\frac{A_{A}}{A_{B}}$
$N_{A} / N_{B}=2 \quad \Rightarrow \quad \lambda_{A} / \lambda_{B}=\lambda / 4$
10. A conducting loop of resistance 10Ω and area $3.5 \times 10^{-3} \mathrm{~m}^{2}$ is placed in uniform and time varying magnetic field $B=0.4 \sin (50 \pi t)$. The Charge passing through the loop in $t=0$ to $t=10 \mathrm{~ms}$ is :
(1) $140 \mu \mathrm{C}$
(2) $70 \mu \mathrm{C}$
(3) $280 \mu \mathrm{C}$
(4) $100 \mu \mathrm{C}$

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS

JEE - 2019

Answer:

(1)

Solution:

$$
\begin{aligned}
Q=\frac{\Delta \varphi}{R} \quad & =\frac{d \varphi}{d t} \\
i R & =\frac{d \varphi}{d t} \\
\frac{d Q}{d t} R & =\frac{d \varphi}{d t} \\
\int d Q & =\int R d \varphi \\
Q & =\frac{1}{R} \int d Q \\
& =\frac{1}{R} A \int_{0}^{10 m s} B d t
\end{aligned}
$$

$$
=140 \mu \mathrm{c}
$$

11. If current in a current carrying wire is 1.5 A , number of free electrons per unit volume is $8 \times 10^{28} \mathrm{~m}^{3}$ and area of cross section is $5 \mathrm{~mm}^{2}$. Drift velocity of electrons will be
(1) $0.2 \mathrm{~mm} / \mathrm{s}$
(2) $2 \mathrm{~mm} / \mathrm{s}$
(3) $0.2 \mathrm{~mm} / \mathrm{s}$
(4) None of these

Answer:

(1)

Solution:

$$
\mathrm{i}=\mathrm{e} \mathrm{n} \mathrm{~A} \mathrm{~V}_{\mathrm{d}}\left(\text { relation between } \mathrm{i} \text { and } \mathrm{v}_{\mathrm{d}}\right)
$$

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS
JEE - 2019

$$
\mathrm{V}_{\mathrm{d}}=\frac{i}{e n A}=\frac{1.5}{1.6 \times 10^{-19} \times 5 \times 10^{-6} \times 8 \times 10^{28}}=0.02
$$

12.

If temperature difference $\mathrm{T}_{1}-\mathrm{T}_{2}$ is $120^{\circ} \mathrm{C}$. The temperature difference between points $\mathrm{A} \& \mathrm{~B}$ is
(1) 30
(2) 45
(3) 60
(4) 75

Answer:

(2)

Solution: effective resistence between A and B is

$$
\frac{\frac{3 R \cdot 1^{2}}{2}}{\frac{3 R+2 R}{2}}=\frac{3 R^{2}}{5 R}
$$

effective resistence between 1 and 2 is

$$
\begin{aligned}
& \frac{R}{2}+\frac{R}{2}+\frac{3 R}{5} \\
& R+\frac{3 R}{5}=\frac{8 R}{5} \\
& \frac{T_{A}-T_{B}}{3 R / 5}=\frac{T_{1}-T_{2}}{8 R / 5} \\
& T_{A}-T_{B}=(120) 15 \times \frac{3}{8}=45^{\circ}
\end{aligned}
$$

13.

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS
JEE-2019

Three blocks m, m and M are kept on a frictionless floor as shown in figure. The left most block is given velocity v towards right. All the collisions between the blocks are perfectly inelastic. The loss in kinetic energy after all the collisions is $5 / 6^{\text {th }}$ of initial kinetic energy. The ratio of M / m will be:
(1) $1 / 8$
(2) $1 / 4$
(3) 4
(4) 2

Answer:

(3)

Solution:

$$
\begin{aligned}
& \frac{m u}{2 m+M}=V_{f} \quad K_{f}=\frac{1}{6} K_{1} \\
& \frac{1}{2} \frac{P^{2}}{2 m+M}=\frac{1}{6} \frac{1}{2} \frac{P^{2}}{m} \\
& 6 m=2 m+M=4 m=M
\end{aligned}
$$

14. In mixture 2 mole of He and limole of Ar is present. Find $\frac{\left(\mathrm{V}_{\mathrm{RMS}}\right)_{\mathrm{He}}}{\left(V_{R M S}\right)_{A r}}$ at 300 k .
(1) 6.32
(2) 1.58
(3) 3.16
(4) 10

Answer:

(3)

Solution:

$$
V_{R M S} \alpha \sqrt{m} \quad V_{R M S}^{2} \sqrt{\frac{3 R T}{M}}
$$

15. Light of wavelength $\lambda_{1}=340 \mathrm{~nm}$ and $\lambda_{2}=540 \mathrm{~nm}$ are incident on a metallic surface. If the ratio of the speed of the electrons ejected is 2 . The work function of the metal is

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS
JEE - 2019
(1) 1 eV
(2) 1.85 eV
(3) 1.5 eV
(4) 2 eV

Answer:

(2)

Solution:

$$
\begin{aligned}
& \frac{h c}{\lambda_{1}}=\phi+\frac{1}{2} m(\mathrm{mv})^{2} \\
& \frac{h c}{\lambda_{2}}=\phi+\frac{1}{2} m V^{2} \\
& s u b \quad 2 \quad \text { in } \\
& \frac{h c}{\lambda_{1}}=\phi+4\left(\frac{h c}{\lambda_{2}}-4\right) \\
& 3 \phi=4\left(\frac{12375}{5400}\right)-\frac{12375}{3400} \\
& \phi=1.838 \quad \sim 1.85
\end{aligned}
$$

16. Value of i_{1} (Ampere) when switch is closed is.

(1) 2
(2) 5
(3) 10
(4) 1

Answer:

(2)

Solution:

$$
\frac{v_{0}-20}{2}=\frac{v-10}{4}=\frac{v-0}{2}
$$

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$
PHYSICS
JEE - 2019
$\Rightarrow V=10 \quad i=\frac{10}{2}=5 \mathrm{~A}$
17. If net force on charge kept at O is zero. The value of charge q is :

(1) $+\frac{Q}{2}$
(2) $-\frac{Q}{2}$
(3) $+\frac{Q}{4}$
(4) $-\frac{Q}{4}$

Answer:

(4)

Solution:

Net force of $q=0 \Rightarrow \frac{K Q q}{(d / 2)_{2}}+\frac{K Q q}{d^{2}}=0$

$$
\therefore q=-\frac{Q}{4}
$$

18. If value of electric field $E^{\circ}+6.3 \times 10^{22}$ volt / m for a electromagnetic wave. The value of magnetic field B will be:
(1) $5 \times 10^{-19} \mathrm{~T}$
(2) $2.1 \times 10^{19} \mathrm{~T}$
(3) $5 \times 10^{-20} T$
(4) $2.1 \times 10^{20} \mathrm{~T}$

Answer:

(2)

Solution:

$$
\frac{E}{B}=C \quad \Rightarrow \quad B=\frac{E}{C}
$$

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS
JEE - 2019
19. Two coherent light sources having intensity I1 and I2. If ratio of $\frac{I_{\max }}{I_{\min }}$ is $6: 1$. Find $\frac{I_{1}}{I_{2}}$?
(1) $\frac{16}{9}$
(2) $\frac{9}{16}$
(3) $\frac{4}{1}$
(4) $\frac{25}{9}$

Answer:

(4)

Solution:

$\frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}$ simplify we get $\frac{I_{1}}{I_{2}}=\frac{25}{9 y^{\prime \prime}}$
20. If length of resistance wire is increased by 0.5% keeping the volume constant then change in resistance will be
(1) 0%
(3) 0.5%
(4) 2%

Answer:

(2)

Solution:

$$
\begin{aligned}
& R=\frac{\rho \mathrm{l} \times 1}{a \times 1}=\frac{\rho \mathrm{l}^{2}}{V} \\
& R \alpha 1^{2}
\end{aligned} \begin{aligned}
1 \omega \times \frac{\Delta R}{1^{2}} & =2\left(\frac{\Delta \mathrm{l}}{1} \times 100\right) \\
& =2(0.5)
\end{aligned} \begin{aligned}
& 100 \times \frac{\Delta R}{1^{2}}=1 \%
\end{aligned}
$$

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS
JEE - 2019
21. A uniform L shaped rod each of side A is held as shown in the figure. The angle θ such that rod remain stable will be.

(1) $\tan ^{-1}\left(\frac{1}{2}\right)$
(2) $\tan ^{-1}\left(\frac{1}{3}\right)$
(3) $\tan ^{-1} 2$
(4) $\tan ^{-1} 1$

Answer:

(2)

Solution:

Clockwise torque $=$ anti clockwise torque

$$
\theta=\tan ^{-1}(1 / 3)
$$

22. A rod of acted by two equal forcesas shown in the figure. The coefficient of thermal expansion of the rod is α and area of cross section is A. Wheng the temperature the rod increased by Δt. The length of the rod does not change. The young's modutus Y will be.

(1) $\frac{F}{2 A \alpha \Delta T}$
(2) $\frac{F}{A \alpha \Delta T}$
(3) $\frac{2 F}{A \alpha \Delta T}$
(4) $\frac{F}{3 A \alpha \Delta T}$

Answer:

(2)

Question:

DATE:

CLASS: $\mathbf{1 2}^{\text {th }}$

PHYSICS

JEE - 2019

$$
\begin{align*}
\Delta \mathrm{l} & =\mathrm{l} \alpha \\
\Delta \mathrm{l} & =\frac{F \mathrm{l}}{A y}
\end{align*}
$$

From 1 and $2 \quad \ell \alpha \Delta T=\frac{F 1}{A y}$

$$
Y=\frac{F}{A \alpha \Delta T}
$$

23. A capacitor is formed by two square metal-plates of edge a, separated by a distancé d. Dielectric of dielectric constants K is filled in the gap as shown in the figure. The equivalent capacitance is

(1) $\frac{k \varepsilon_{0} a^{2} l n k}{d(\mathrm{k}-1)}$
(2) $\frac{k \varepsilon_{0} a^{2} k n k}{d(\mathrm{k}-2)}$
(3) $\frac{k \varepsilon_{0} a^{2} l n k}{2 d(\mathrm{k}-1)}$
(4) $\frac{2 k \varepsilon_{0} a^{2} \ln k}{d(\mathrm{k}-1)}$

Answer:

(1)

Solution:

$\left\{\frac{y}{d}=\frac{x}{a}\right\}$
$d C_{2}=\frac{\varepsilon_{0} a d x}{(\mathrm{~d}-\mathrm{y})}$
$d C_{1}=\frac{K \varepsilon_{0} a d x}{y}$
$d C_{e q}=\left(\frac{d C_{1} d C_{2}}{d a+d C_{2}}\right)=\frac{\varepsilon_{0} a d x}{\left(\frac{C_{1}}{K}\right)+\left(\frac{d-y}{1}\right)} \ldots \ldots \ldots \ldots .2$

DATE:

CLASS: $12^{\text {th }}$
PHYSICS
JEE-2019

$$
C_{e q}=\int_{0}^{a} \frac{\varepsilon_{0} a d x}{\frac{y}{k}+\frac{(\mathrm{d}-\mathrm{y})}{1}}
$$

Integrating we get option 1
24. In a semiconductor mobility of electron, i.e. drift velocity per unit applied electric field is 1.6 (S.I unit). Density of electron is $10^{19} / \mathrm{m}^{3}$. (Neglect holes concentration). Resistivity of semiconductor is :-
(1) $0.4 \Omega \mathrm{~m}$
(2) $2 \Omega \mathrm{~m}$
(3) $4 \Omega \mathrm{mi}$
(4) $0.2 \Omega \mathrm{~m}$

Answer:

(1)

Solution:

$$
\sigma=n e \mu \Rightarrow \rho=\frac{1}{n e \mu}
$$

25. A block of mass M is hanging by a string of negligible mass in a car. The speed of wave in the string $60 \mathrm{~m} / \mathrm{s}$. Now car is accelerated horizontally by an acceleration a the speed of wave in the string is $60.5 \mathrm{~m} / \mathrm{s}$. What is a in terms of g ?
(1) $\frac{g}{5}$
(2) $\frac{g}{10}$
(3) $\frac{g}{\sqrt{30}}$
(4) $\frac{g}{30}$

Answer:

(3)

Solution:

DATE:

PHYSICS

CLASS: $12^{\text {th }}$

JEE - 2019

$$
\begin{aligned}
& v=\sqrt{\frac{m a}{M}} \\
& \frac{\sqrt{g^{2}+u^{2}}}{g}=\left(\frac{60.5}{60}\right) \\
& \frac{g 1+\left(\frac{a}{g}\right)^{2}}{g}=\left(\frac{60.5}{60}\right) \\
& \left(1+\frac{1}{2} \frac{a}{g}\right)=\left(\frac{60.5}{60}\right)=\left(\frac{60+\frac{1}{2}}{60}\right)
\end{aligned}
$$

Simplifying $a=g / \sqrt{30}$

Er. Ajay Kumar

 ajayonlinezone@gmail.com www.ConceptsMade Dasy.com